OPEN SHORTEST PATH FIRST

How to take advantage of routing protocols
ABOUT ME

Studied network and security at the Technical University of Troyes (France)

Working at WienCERT (Stadt-Wien)
AGENDA

What is a routing protocol?

How to use a vulnerable configuration?

Consequences and how to avoid it.
WHAT IS A ROUTING PROTOCOL

4 Photo courtesy of Dawson Construction Co. BP Refinery project
ROUTING IN IP NETWORKS

IP Networks & Masks

<table>
<thead>
<tr>
<th>IP</th>
<th>Network</th>
<th>Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.9/29</td>
<td>10.0.0.8</td>
<td>255.255.255.248</td>
</tr>
</tbody>
</table>
ROUTING IN IP NETWORKS

IP: 192.168.42.1/24

<table>
<thead>
<tr>
<th>Network</th>
<th>Gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.0/8</td>
<td>R1</td>
</tr>
<tr>
<td>10.0.0.0/24</td>
<td>R2</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>R3</td>
</tr>
</tbody>
</table>

To reach 10.0.0.1 ⇒ GW R2

To reach 10.0.1.1 ⇒ GW R1

To reach 192.168.1.1 ⇒ GW R3
HISTORICAL ROUTING

All routers controlled by the same administrative authority

Security wasn’t really a preoccupation

Internet grew too fast to implement security changes
WHAT IS A ROUTING PROTOCOL?

Share routes through the network in an automated way

IGP vs. EGP

link-state vs. distance-vector
OSPF: A ROUTING PROTOCOL

Interior Gateway Protocol

Multicast (224.0.0.5 or FF02::5)

Link-State Protocol \(\Rightarrow \) Keep state with UPDATE packets

Encapsulated directly in IP (protocol 89)
Network Bravo

<table>
<thead>
<tr>
<th>Network A</th>
<th>R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network C</td>
<td>R3</td>
</tr>
</tbody>
</table>

Network Alpha

<table>
<thead>
<tr>
<th>Network B</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network C</td>
<td>R3</td>
</tr>
</tbody>
</table>

Network Charlie

R1

R2

R3

OSPF

DYNAMIC ROUTING
HOW TO EXPLOIT A VULNERABLE CONFIGURATION

bit.ly/1vkWpOP
MULTIPLE VULNERABILITIES

Old protocol (last RFC in 1998)

Information sent in clear text …
OSPF HEADER

Frame 1: 90 bytes on wire (720 bits), 90 bytes captured (720 bits) on interface 0
Ethernet II, Src: b8:6b:23:6c:d8:74 (b8:6b:23:6c:d8:74), Dst: IPv4mcast_05 (01:00:5e:00:00:05)
Internet Protocol Version 4, Src: 10.0.0.1 (10.0.0.1), Dst: 224.0.0.5 (224.0.0.5)

Open Shortest Path First

OSPF Header
- Version: 2
- Message Type: Hello Packet (1)
- Packet Length: 44
- Source OSPF Router: 10.0.0.1 (10.0.0.1)
- Area ID: 10.0.0.20 (10.0.0.20)
- Checksum: 0xeb8 [correct]
- Auth Type: Simple password (1)
- Auth Data (Simple): P4ssW0rd

OSPF Hello Packet
- Network Mask: 255.255.255.0 (255.255.255.0)
- Hello Interval [sec]: 0
- Options: 0x12 (L, E)
- Router Priority: 1
- Router Dead Interval [sec]: 1
- Designated Router: 10.0.0.1 (10.0.0.1)
- Backup Designated Router: 0.0.0.0 (0.0.0.0)
MULTIPLE VULNERABILITIES II

Standard configuration of routers

⇒ Clear text auth

⇒ add router to the network

⇒ and then add new routes to the protocol
DYNAMIC ROUTING

Network Bravo

Network Alpha

Network Charlie

R1

R2

R3
DYNAMIC ROUTING

Network Bravo

<table>
<thead>
<tr>
<th>Network A</th>
<th>R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network C</td>
<td>R3</td>
</tr>
<tr>
<td>Illegal Net.</td>
<td>R3</td>
</tr>
</tbody>
</table>

Network Alpha

<table>
<thead>
<tr>
<th>Network B</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network C</td>
<td>R3</td>
</tr>
<tr>
<td>Illegal Net.</td>
<td>R3</td>
</tr>
</tbody>
</table>

Network Charlie

<table>
<thead>
<tr>
<th>Network A</th>
<th>R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network B</td>
<td>R2</td>
</tr>
<tr>
<td>Illegal Net.</td>
<td>NewR</td>
</tr>
</tbody>
</table>

Illegal Network
CONSEQUENCES

Re-route internal IP-traffic

Manipulate connections (DNS, DHCP, …)

Reroute external IPs to internal servers
WHAT ABOUT OTHER PROTOCOLS?
EIGRP

Distance-Vector Cisco Routing Protocol

```
Cisco EIGRP
  Version: 2
  Opcode: Hello (5)
  Checksum: 0xeecb [correct]
  Flags: 0x00000000
  Sequence: 0
  Acknowledge: 0
  Virtual Router ID: 0 (Address-Family)
  Autonomous System: 1
Parameters
  Type: Parameters (0x0001)
  Length: 12
  K1: 1
  K2: 0
  K3: 1
  K4: 0
  K5: 0
  K6: 0
  Hold Time: 15
  Software Version: EIGRP=12.4, TLV=1.2
```

```
Cisco EIGRP
  Version: 2
  Opcode: Hello (5)
  Checksum: 0x617b [correct]
  Flags: 0x00000000
  Sequence: 0
  Acknowledge: 0
  Virtual Router ID: 0 (Address-Family)
  Autonomous System: 1
Authentication MD5
  Type: Authentication (0x0002)
  Length: 40
  Type: MD5 (2)
  Length: 16
  Key ID: 1
  Key Sequence: 0
  Nullpad: 0000000000000000
  Digest: d894ae09c540ad2a8f66324f02efcf64
Parameters
  Software Version: EIGRP=12.4, TLV=1.2
```
RIPv2

Distance-Vector Routing Protocol

Routing Information Protocol
Command: Request (1)
Version: RIPv2 (2)
Authentication: Simple Password
 Authentication type: Simple Password (2)
 Password: mysupersecurekey
Address not specified, Metric: 16
 Address Family: Unspecified (0)
 Route Tag: 0
 Netmask: 0.0.0.0 (0.0.0.0)
 Next Hop: 0.0.0.0 (0.0.0.0)
 Metric: 16

Routing Information Protocol
 Command: Request (1)
 Version: RIPv2 (2)
 Authentication: Keyed Message Digest
 Authentication type: Keyed Message Digest (3)
 Digest Offset: 44
 Key ID: 1
 Auth Data Len: 20
 Seq num: 6
 Zero Padding
 Authentication Data Trailer
 Authentication Data: 30 4d 80 fa f7 f5 35 0d
Address not specified, Metric: 16
 Address Family: Unspecified (0)
 Route Tag: 0
 Netmask: 0.0.0.0 (0.0.0.0)
 Next Hop: 0.0.0.0 (0.0.0.0)
 Metric: 16
BGP

Exterior Gateway Protocol

This vulnerability is not applicable

Neighboring required to route
TOOLS

Wireshark
Loki
Quagga
Scapy (contrib module; no md5)
NRL Core

Nemesis
IP Sorcery
Cain&Abel
Net Dude
Collasoft
IRPAS
HOW TO AVOID MIS-CONFIGURATION

http://bit.ly/1uG7Qak
CONFIGURATION

Know your routers!

Review your configuration periodically

Limit the scope of your routing protocol

Test your configuration
show protocols ospf area 0.0.0.0
interface vlan.1 {
 retransmit-interval 5;
 hello-interval 2;
 dead-interval 10;
 authentication {
 md5 1 key "mypassword";
 }
}
}
interface ge-0/0/1.0 {
 passive;
}
router ospf
 ospf router-id 10.0.0.1
#
network 10.1.2.0/24 area 0
network 10.2.4.0/24 area 0
passive-interface eth0:1
#
redistribute kernel
redistribute connected
redistribute static
default-information originate
#
CISCO EXAMPLE

router ospf 1
 router-id 10.0.0.1
 log-adjacency-changes
area 10.0.0.20 authentication
redistribute connected metric 50 subnets
redistribute static subnets
 passive-interface default
no passive-interface FastEthernet0
network 10.11.12.0 0.0.0.255 area 20
network 192.168.42.0 0.0.0.255 area 20
interface FastEthernet0
 ip address 10.0.0.1 255.255.255.0
 ip ospf authentication message-digest
 ip ospf authentication-key P4ssW0rd
 ip ospf 1 area 10.0.0.20
duplex auto
speed auto
CISCO EXAMPLE

Open Shortest Path First

OSPF Header

Version: 2
Message Type: Hello Packet (1)
Packet Length: 44
Source OSPF Router: 10.0.0.1 (10.0.0.1)
Area ID: 10.0.0.20 (10.0.0.20)
Checksum: 0x0000 (None)
Auth Type: Cryptographic (2)
Auth Crypt Key id: 0
Auth Crypt Data Length: 16
Auth Crypt Sequence Number: 1408605512

Auth Crypt Data: ef8a1311e6fd3d42ddc5b9ff1dd8dbd1

OSPF Hello Packet

Network Mask: 255.255.255.0 (255.255.255.0)
Hello Interval [sec]: 0
Options: 0x12 (L, E)
Router Priority: 1
Router Dead Interval [sec]: 1
Designated Router: 10.0.0.1 (10.0.0.1)
Backup Designated Router: 0.0.0.0 (0.0.0.0)
PATCH MANAGEMENT

Patch your network devices

Learn about new protocol (OSPFv3 w/ AH&ESP)

Use the new protocols
OTHER VULNERABILITIES?

Spoofed LSA (CVE-2013-0149)
CONCLUSION

Consider Routing as a critical asset

Monitor your network

Audit your network periodically
SPECIAL THANKS

WienCERT PGP-Key:
9B2C C43A 0B5A 6269 A438
A1FC 07FA F5B9 948A D027
CONTACT

louis@durufle.eu

@louisdurufle
REFERENCES

Scapy OSPF Module https://raw.githubusercontent.com/d1b/scapy/master/scapy/contrib/ospf.py