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Summary
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Buffer overflow
(a.k.a.) Buffer overrun
An anomaly where a program, while writing 

data to the buffer, overruns its boundary, thus 
overwriting adjacent memory location(s)

Commonly associated with programming 
languages C and C++ (no boundary checking)

Stack-based (e.g. statically allocated built-in 
array at compile time) – overwriting stack 
elements

Heap-based (e.g. dynamically allocated 
malloc() array at run time) – overwriting heap 
internal structures (e.g. linked list pointers)
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Stack-based overflow



BSidesVienna 2014, Vienna (Austria)                             November 22nd, 2014 5

Heap-based overflow
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Vulnerable code (stack-based)



BSidesVienna 2014, Vienna (Austria)                             November 22nd, 2014 7

Vulnerable code (heap-based)
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History
 1961 - Burroughs 5000 (executable space protection)
 1972 - Computer Security Technology Planning Study (buffer 

overflow as an idea)
 1988 - Morris worm (earliest exploitation – gets() in fingerd)
 1995 - Buffer overflow rediscovered (Bugtraq)
 1996 - “Smashing the Stack for Fun and Profit” (Aleph One)
 1997 - “Return-into-lib(c) exploits” (Solar Designer)
 2000 - The Linux PaX project
 2001 - Code Red (IIS 5.0); Heap spraying (MS01-033)
 2003 - SQL Slammer (MsSQL 2000); Microsoft VS 2003 flag /GS
 2004 - NX on Linux (kernel 2.6.8); DEP on Windows (XP SP2); Egg 

hunting (skape)
 2005 - ASLR on Linux (kernel 2.6.12); GCC flag -fstack-protector
 2007 - ASLR on Windows (Vista); ROP (Sebastian Krahmer)



BSidesVienna 2014, Vienna (Austria)                             November 22nd, 2014 9

Stack canaries
(a.k.a.) Stack cookies, Stack-Smashing 

Protector (SSP)
Named for analogy to a canary in a coal mine
Implemented by the compiler
Placing a small (e.g. random) integer value to 

stack just before the return pointer
In order to overwrite the return pointer (and 

thus take control of the process) the canary 
value would also be overwritten

This value is checked to make sure it has not 
changed before a routine uses the return 
pointer from the stack
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ASCII armor

Generally maps important library addresses 
(e.g. libc) to a memory range containing a 
NULL byte (e.g. 0x00****** - 0x0100******)

Makes it hard to construct address or pass 
arguments by exploiting string functions (e.g. 
strcpy())

Not effective when NULL (i.e. 0x00) byte is not 
an issue (rarely)

Easily bypassable by using PLT (Procedure 
Language Table) entries in case of position 
independent binary
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SEH

Structured Exception Handler
Implemented by the compiler
Pointer to the exception handler is added to 

the stack in the form of the “Exception 
Registration Record” (SEH) and “Next 
Exception Registration Record” (nSEH)

If the buffer is overflown and (junk) data is 
written to the SEH (located eight bytes after 
ESP), invalid handler is called due to the 
inherently raised exception (i.e. 
STATUS_ACCESS_VIOLATION), thus preventing 
successful execution of used payload
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SEH (chain)
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SEHOP

Structured Exception Handler Overwrite 
Protection

Blocks exploits that use (highly popular) SEH 
overwrite method

Enabled by default on Windows Server 2008, 
disabled on Windows Vista SP1 and Windows 7

Symbolic exception registration record 
appended to the end of exception handler list

Integrity of exception handler chain is broken if 
symbolic record can't be reached and/or if it's 
found to be invalid
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SafeSEH

Safe Structured Exception Handling
(a.k.a.) Software-enforced DEP
All exception handlers' entry points collected to 

a designated read-only table collected at the 
compilation time

Safe Exception Handler Table
Attempt to execute any unregistered exception 

handler will result in the immediate program 
termination
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DEP/NX
Data Execution Prevention/No eXecute
(a.k.a.) Non-executable stack, Execute Disable, 

Exec Shield (Linux), W^X (FreeBSD)
Set of hardware and software technologies that 

perform additional checks on memory
Provides protection for all memory pages that 

are not specifically marked as executable
Processor must support hardware-enforced 

mechanism (NX/EVP/XD)
Executables and libraries have to be 

specifically linked (problems with older 
software)
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ASLR

Address Space Layout Randomization
Introduces the randomness into the address 

space of process
Positions of key data areas are randomly 

scattered (i.e. dynamic/shared libraries, heap 
and stack)

Its strength is based upon the low chance of an 
attacker guessing the locations of randomly 
placed areas

Executables and dynamic/shared libraries have 
to be specifically linked (problems with older 
software)
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Safe functions
Well-written functions that automatically 

perform buffer management (including 
boundary checking), reducing the occurrence 
and impact of buffer overflows

Usually by introducing explicit parameter size
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NOP sled
(a.k.a.) NOP slide, NOP ramp
Oldest and most widely known method for 

stack buffer overflow exploitation
Large sequence of NOP (no-operation) 

instructions meant to “slide” the CPU's 
execution flow

Used when jump location has to be given 
(payload), while it's impossible to be exactly 
predicted

Today widely used in high profile exploits 
utilizing “Heap spraying” method (e.g. 
browsers)
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NOP sled (visual)
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ret2libc
(a.k.a.) ret2system, arc injection
Overwriting the return address with location of 

a function that is already loaded in the binary 
or via shared library

Required arguments are also provided through 
stack overwrite

Shared library libc(.so) is always linked to 
executables on UNIX style systems and 
provides useful calls (e.g. system())

Dynamic library kernel32(.dll) is always loaded 
by executables on Win32 style systems and 
provides useful calls (e.g. WinExec())
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ret2libc (visual)
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ret2reg
Return-to-register (e.g. ESP, EAX, etc.)
(a.k.a.) Trampolining
Also, variants like ret2pop, ret2ret, etc.
We overwrite the EIP with the address of an 

existing instruction that would jump to the 
location of a register

Preferred choice is the register pointing to the 
location inside our buffer (usually ESP)

Much more reliable method than NOP sled
Without the need for extra room for NOP sled 

and without having to guess stack offset
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ret2reg (visual)
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Egg hunting
Used in reduced buffer space situations
Allows usage of a small payload (“egg hunter”) 

to find the actual (bigger) payload
The final payload must be somewhere in 

memory (i.e. stack, heap or secondary buffer) 
prepended with the unique marking string (2x4 
bytes) called “egg” (e.g. “w00tw00t”)

Searching memory byte at a time
Memory “peeking” with syscall mechanism(s) 

to bypass access violation issues
Egg hunter types: SEH, IsBadReadPtr, 

NtDisplayString, NtAccessCheckAndAuditAlarm
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Egg hunter (NtDisplayString)
loop_inc_page:
or    dx, 0x0fff       // Add PAGE_SIZE-1 to edx
loop_inc_one:
inc   edx              // Increment our pointer by one
loop_check:
push  edx              // Save edx
push  0x43             // Push NtDisplayString
pop   eax              // Pop into eax
int   0x2e             // Perform the syscall
cmp   al, 0x05         // Did we get 0xc0000005 (ACCESS_VIOLATION) ?
pop   edx              // Restore edx
loop_check_8_valid: 
je    loop_inc_page    // Yes, invalid ptr, go to the next page
is_egg:
mov   eax, 0x50905090  // Throw our egg in eax
mov   edi, edx         // Set edi to the pointer we validated
scasd                  // Compare the dword in edi to eax
jnz   loop_inc_one     // No match? Increment the pointer by one
scasd                  // Compare the dword in edi to eax again (which is now 
edx + 4)
jnz   loop_inc         // No match? Increment the pointer by one
matched:
jmp   edi              // Found the egg. Jump 8 bytes past it into our code.
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Egg hunting (visual)
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SEH bypass
SEH is highly flawed against buffer overflows
Overwrite (last in chain) SEH with address of 

"POP; POP; RET" sequence of instructions and 
nSEH with explicit relative "JMP" to payload

Deliberate exception has to be caused 
(inherently by sending malformed buffer)

“POP; POP; RET” passes the execution flow to 
the nSEH's JMP, which afterwards jumps to the 
payload at the end of the buffer

Effective as the stack canary bypass method 
(too) as exception is triggered (and handled) 
before the canary/cookie value is checked
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SEH bypass (visual)
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ROP
Return-Oriented Programming
Attacker executes carefully chosen machine 

instruction sequences called “gadgets”
Each gadget ends with an instruction RET (e.g. 

“INC EAX; RET”)
ROP “chain” consists of gadget memory 

locations (sequentially popped and executed)
Provides a fully functional language that can be 

used to perform any operation desired (usually 
to disable DEP)

Semi-automated process of making a wanted 
ROP “chain” (mona.py)
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ROP (disable DEP)

Taken from: https://www.corelan.be
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ROP (visual)
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Heap spray

Top payload delivery method used in browser 
exploits (and recent high profile attacks)

Takes advantage of the fact that the heap 
management is deterministic

Attacker needs to be able to deliver the 
payload in the right location in memory before 
triggering the bug that leads to EIP control

A good heap spray (if done right) will end up 
allocating a chunk of memory at a predictable 
location, after a certain amount of allocations

At the end (predictable) heap address needs to 
be put into EIP
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Heap spray (visual)
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Demo time
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Questions?
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