
Smashing the Buffer

Miroslav Štampar
(mstampar@zsis.hr)

Smashing the Buffer

Miroslav Štampar
(mstampar@zsis.hr)

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 2

Summary

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 3

Buffer overflow
(a.k.a.) Buffer overrun
An anomaly where a program, while writing

data to the buffer, overruns its boundary, thus
overwriting adjacent memory location(s)

Commonly associated with programming
languages C and C++ (no boundary checking)

Stack-based (e.g. statically allocated built-in
array at compile time) – overwriting stack
elements

Heap-based (e.g. dynamically allocated
malloc() array at run time) – overwriting heap
internal structures (e.g. linked list pointers)

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 4

Stack-based overflow

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 5

Heap-based overflow

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 6

Vulnerable code (stack-based)

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 7

Vulnerable code (heap-based)

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 8

History
 1961 - Burroughs 5000 (executable space protection)
 1972 - Computer Security Technology Planning Study (buffer

overflow as an idea)
 1988 - Morris worm (earliest exploitation – gets() in fingerd)
 1995 - Buffer overflow rediscovered (Bugtraq)
 1996 - “Smashing the Stack for Fun and Profit” (Aleph One)
 1997 - “Return-into-lib(c) exploits” (Solar Designer)
 2000 - The Linux PaX project
 2001 - Code Red (IIS 5.0); Heap spraying (MS01-033)
 2003 - SQL Slammer (MsSQL 2000); Microsoft VS 2003 flag /GS
 2004 - NX on Linux (kernel 2.6.8); DEP on Windows (XP SP2); Egg

hunting (skape)
 2005 - ASLR on Linux (kernel 2.6.12); GCC flag -fstack-protector
 2007 - ASLR on Windows (Vista); ROP (Sebastian Krahmer)

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 9

Stack canaries
(a.k.a.) Stack cookies, Stack-Smashing

Protector (SSP)
Named for analogy to a canary in a coal mine
Implemented by the compiler
Placing a small (e.g. random) integer value to

stack just before the return pointer
In order to overwrite the return pointer (and

thus take control of the process) the canary
value would also be overwritten

This value is checked to make sure it has not
changed before a routine uses the return
pointer from the stack

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 10

ASCII armor

Generally maps important library addresses
(e.g. libc) to a memory range containing a
NULL byte (e.g. 0x00****** - 0x0100******)

Makes it hard to construct address or pass
arguments by exploiting string functions (e.g.
strcpy())

Not effective when NULL (i.e. 0x00) byte is not
an issue (rarely)

Easily bypassable by using PLT (Procedure
Language Table) entries in case of position
independent binary

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 11

SEH

Structured Exception Handler
Implemented by the compiler
Pointer to the exception handler is added to

the stack in the form of the “Exception
Registration Record” (SEH) and “Next
Exception Registration Record” (nSEH)

If the buffer is overflown and (junk) data is
written to the SEH (located eight bytes after
ESP), invalid handler is called due to the
inherently raised exception (i.e.
STATUS_ACCESS_VIOLATION), thus preventing
successful execution of used payload

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 12

SEH (chain)

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 13

SEHOP

Structured Exception Handler Overwrite
Protection

Blocks exploits that use (highly popular) SEH
overwrite method

Enabled by default on Windows Server 2008,
disabled on Windows Vista SP1 and Windows 7

Symbolic exception registration record
appended to the end of exception handler list

Integrity of exception handler chain is broken if
symbolic record can't be reached and/or if it's
found to be invalid

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 14

SafeSEH

Safe Structured Exception Handling
(a.k.a.) Software-enforced DEP
All exception handlers' entry points collected to

a designated read-only table collected at the
compilation time

Safe Exception Handler Table
Attempt to execute any unregistered exception

handler will result in the immediate program
termination

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 15

DEP/NX
Data Execution Prevention/No eXecute
(a.k.a.) Non-executable stack, Execute Disable,

Exec Shield (Linux), W^X (FreeBSD)
Set of hardware and software technologies that

perform additional checks on memory
Provides protection for all memory pages that

are not specifically marked as executable
Processor must support hardware-enforced

mechanism (NX/EVP/XD)
Executables and libraries have to be

specifically linked (problems with older
software)

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 16

ASLR

Address Space Layout Randomization
Introduces the randomness into the address

space of process
Positions of key data areas are randomly

scattered (i.e. dynamic/shared libraries, heap
and stack)

Its strength is based upon the low chance of an
attacker guessing the locations of randomly
placed areas

Executables and dynamic/shared libraries have
to be specifically linked (problems with older
software)

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 17

Safe functions
Well-written functions that automatically

perform buffer management (including
boundary checking), reducing the occurrence
and impact of buffer overflows

Usually by introducing explicit parameter size

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 18

NOP sled
(a.k.a.) NOP slide, NOP ramp
Oldest and most widely known method for

stack buffer overflow exploitation
Large sequence of NOP (no-operation)

instructions meant to “slide” the CPU's
execution flow

Used when jump location has to be given
(payload), while it's impossible to be exactly
predicted

Today widely used in high profile exploits
utilizing “Heap spraying” method (e.g.
browsers)

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 19

NOP sled (visual)

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 20

ret2libc
(a.k.a.) ret2system, arc injection
Overwriting the return address with location of

a function that is already loaded in the binary
or via shared library

Required arguments are also provided through
stack overwrite

Shared library libc(.so) is always linked to
executables on UNIX style systems and
provides useful calls (e.g. system())

Dynamic library kernel32(.dll) is always loaded
by executables on Win32 style systems and
provides useful calls (e.g. WinExec())

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 21

ret2libc (visual)

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 22

ret2reg
Return-to-register (e.g. ESP, EAX, etc.)
(a.k.a.) Trampolining
Also, variants like ret2pop, ret2ret, etc.
We overwrite the EIP with the address of an

existing instruction that would jump to the
location of a register

Preferred choice is the register pointing to the
location inside our buffer (usually ESP)

Much more reliable method than NOP sled
Without the need for extra room for NOP sled

and without having to guess stack offset

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 23

ret2reg (visual)

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 24

Egg hunting
Used in reduced buffer space situations
Allows usage of a small payload (“egg hunter”)

to find the actual (bigger) payload
The final payload must be somewhere in

memory (i.e. stack, heap or secondary buffer)
prepended with the unique marking string (2x4
bytes) called “egg” (e.g. “w00tw00t”)

Searching memory byte at a time
Memory “peeking” with syscall mechanism(s)

to bypass access violation issues
Egg hunter types: SEH, IsBadReadPtr,

NtDisplayString, NtAccessCheckAndAuditAlarm

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 25

Egg hunter (NtDisplayString)
loop_inc_page:
or dx, 0x0fff // Add PAGE_SIZE-1 to edx
loop_inc_one:
inc edx // Increment our pointer by one
loop_check:
push edx // Save edx
push 0x43 // Push NtDisplayString
pop eax // Pop into eax
int 0x2e // Perform the syscall
cmp al, 0x05 // Did we get 0xc0000005 (ACCESS_VIOLATION) ?
pop edx // Restore edx
loop_check_8_valid:
je loop_inc_page // Yes, invalid ptr, go to the next page
is_egg:
mov eax, 0x50905090 // Throw our egg in eax
mov edi, edx // Set edi to the pointer we validated
scasd // Compare the dword in edi to eax
jnz loop_inc_one // No match? Increment the pointer by one
scasd // Compare the dword in edi to eax again (which is now
edx + 4)
jnz loop_inc // No match? Increment the pointer by one
matched:
jmp edi // Found the egg. Jump 8 bytes past it into our code.

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 26

Egg hunting (visual)

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 27

SEH bypass
SEH is highly flawed against buffer overflows
Overwrite (last in chain) SEH with address of

"POP; POP; RET" sequence of instructions and
nSEH with explicit relative "JMP" to payload

Deliberate exception has to be caused
(inherently by sending malformed buffer)

“POP; POP; RET” passes the execution flow to
the nSEH's JMP, which afterwards jumps to the
payload at the end of the buffer

Effective as the stack canary bypass method
(too) as exception is triggered (and handled)
before the canary/cookie value is checked

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 28

SEH bypass (visual)

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 29

ROP
Return-Oriented Programming
Attacker executes carefully chosen machine

instruction sequences called “gadgets”
Each gadget ends with an instruction RET (e.g.

“INC EAX; RET”)
ROP “chain” consists of gadget memory

locations (sequentially popped and executed)
Provides a fully functional language that can be

used to perform any operation desired (usually
to disable DEP)

Semi-automated process of making a wanted
ROP “chain” (mona.py)

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 30

ROP (disable DEP)

Taken from: https://www.corelan.be

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 31

ROP (visual)

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 32

Heap spray

Top payload delivery method used in browser
exploits (and recent high profile attacks)

Takes advantage of the fact that the heap
management is deterministic

Attacker needs to be able to deliver the
payload in the right location in memory before
triggering the bug that leads to EIP control

A good heap spray (if done right) will end up
allocating a chunk of memory at a predictable
location, after a certain amount of allocations

At the end (predictable) heap address needs to
be put into EIP

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 33

Heap spray (visual)

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 34

Demo time

BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 35

Questions?

	Analysis of mass SQL injection attacks
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

