THE FUZZING PROJECT

Can we run C with fewer bugs?

Hanno Bock

https://hboeck.de/


https://hboeck.de/

WHO AM I?

Hanno Bock
Freelance journalist (Golem.de, Zeit Online, taz, LWN)
Started Fuzzing Project November 2015

Since May 2015: Supported by Linux Foundation's Core
Infrastructure Initiative



t lcamtuf X ‘ |

Quick quiz: would you ever run strings on
an untrusted file?

] Pedade] e




FUZZING BINUTILS

Hundreds of bugs



WHAT IS FUZZING?

Test software with random malformed input



THE PAST

Dumb fuzzing: Only finds the easy bugs

Template-based fuzzing: a lot of work for each target



AMERICAN FUZZY LOP




AMERICAN FUZZY LOP (AFL)

Smart fuzzing, quick and easy
Code instrumentation

Watches for new code paths



american fuzzy lop 0.94b (unrtf)

process timing overall results
run time : 0 days, @ hrs, O min, 37 sec cycles done : 0
last new path : @ days, © hrs, O min, @ sec total paths : 268
last uniq crash : @ days, @ hrs, @ min, 21 sec uniq crashes : 1
last unig hang : none seen yet uniq hangs : ©
cycle progress map coverage
now processing : @ (0.00%) map density : 1360 (2.08%)
paths timed out : @ (0.00%) count coverage : 2Z.62 bits/tuple
stage progress findings in depth
now trying : bitflip 2/1 favored paths : 1 (0.37%)
stage execs : /406/13.3k (55.57%) new edges on : 118 (44.03%)
total execs : 24.2k total crashes : 5 (1 unique)
exec speed : 646.5/sec total hangs : @ (0 unique)
fuzzing strategy yields path geometry
bit flips : 220/13.3k, 0/0, 0/0 levels : 2
byte flips : 0/0, 0/0, 0/0 pending : 268
arithmetics : 0/0, 0/0, 0/0 pend fav : 1
known ints : ©/0, /0, 0/0 own finds : 267
havoc : 0/0, 0/0 imported : O
trim : 4 B/820 (0.24% gain) variable : 0

[cpu: 29%]



AFL SUCCESS STORIES

Bash Shellshock variants (CVE-2014-{6277,6278})

Stagefright vulnerabilities (CVE-2015-
{1538,3824,3827,3829,3864,3876,6602})

GnuPG (CVE-2015-{1606,1607,9087})
OpenSSH out-of-bounds in handshake
OpenSSL (CVE-2015-{0288,0289,1788,1789,1790})
BIND remote crashes (CVE-2015-{5477,2015,5986})
NTPD remote crash (CVE-2015-7855)

Libreoffice GUI interaction crashes

10



ADDRESS SANITIZER (ASAN)

If you only take away one thing from this talk:
Use Address Sanitizer!

-fsanitize=address in gcc/clang

11



SPOT THE BUG!

int main() {
int a[2] = {1, 0O};

printf("%i", a[2]);

12



==577==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7ffe64bTh498 at pc 0x400a06 bp 0x7Tffe64bfh460 sp 0x7fTe64bTh450
READ of size 4 at Ox7ffe64bTbh498 thread TO

#0 0x400a05 in main /tmp/test.c:3

#1 Ox7T701400262f in _ libc_start_main (/1ib64/1ibc.so0.6+0x2062T)

#2 0x400878 in _start (/tmp/a.out+0x400878)

Address 0x7ffe64bfbh498 is located in stack of thread TO at offset 40 in frame
#0 0x400955 in main /tmp/test.c:1

This frame has 1 object(s):
[32, 40) 'a' <== Memory access at offset 40 overflows this variable
HINT: this may be a false positive if your program uses some custom stack unwind mechanism or swapcontext
(longjmp and C++ exceptions *are* supported)
SUMMARY: AddressSanitizer: stack-buffer-overflow /tmp/test.c:3 main
Shadow bytes around the buggy address:
0x10004c977640: 00 00 OO0 00 OO0 0O OO0 00 GO 00 QO OO0 GO 00 GO 0O
0x10004c977650: 00 00 00 00 00 00 GO GO OO OO 0O OO GO 00 0O 00
0x10004c977660: 00 00 00 0O 00 0O 60 00 GO G0 GO0 OO0 GO 00 60 00
OxX10004c977670: 00 00 OO 00 00 0O OO0 00 GO OO0 QO OO0 GO OO GO 0O
0x10004c977680: 00 00 00 00 00 00 GO0 GO0 0O 0O 00 00 00 00 T1 T1
=>0x10004c977690: f1 f1 EO[f4]f4 f4 00 00 OO G0 OO 60 0O 00 OO 00O
0x10004c9776a0: 00 00 OO 00 OO0 0O OO0 00 GO OO0 QO OO0 GO OO OO 0O
0x10004c9776b0: 00 00 00 00 00 00 GO GO0 0O 0O 00 00 G0 00 0O 0O
0x10004c9776cO: 00 00 00 00 00 0O OO0 00 GO 00 QO 00 GO 00 00 60
0x10004c9776d0: 00 OO0 OO0 OO 00 OO 00 OO PO PO OO0 OO 00 PO 0O PO
0x10004c9776e0: 00 00 00 0O 00 0O GO 00 GO 00 GO OO0 0O 00 GO 00
Shadow byte legend (one shadow byte represents 8 application bytes):

Addressable: 00
Partially addressable: 01 02 03 04 05 06 07
Heap left redzone: fa
Heap right redzone: Th
Freed heap region: fd
Stack left redzone: i
Stack mid redzone: T2
Stack right redzone: 3
Stack partial redzone: 4
Stack after return: 5
Stack use after scope: 8
Global redzone: 9
Global init order: 6
Poisoned by user: 7
Contiguous container 00B:fTc
ASan internal: fe

==577==ABORTING



ADDRESS SANITIZER HELPS

Finds lots of hidden memory access bugs like out of bounds
read/write (Stack, Heap, Global), use-after-free etc.

14






FINDING HEARTBLEED WITH
AFL+ASAN

Small OpenSSL handshake wrapper
AFL finds Heartbleed within 6 hours

LibFuzzer needs just 5 Minutes

16



BN_SQR BUG (CVE-2014-3570)

Wrong calculation in one out of 21128 cases
No way to find this with random testing

AFL can find it (credit: Ralph-Philipp Weinmann)

17



ADDRESS SANITIZER

If ASAN catches all these typical C bugs...

... can we just use it in production?

18



ASAN IN PRODUCTION

Yes, but not for free
50 - 100 % CPU and memory overhead

Example: Hardened Tor Browser

19



GENTOO LINUXWITH ASAN

Everything compiled with ASAN except a few core packages
(gcc, glibc, dependencies)

20



FIXING PACKAGES

Memory access bugs in normal operation.
These need to be fixed.

bash, shred, python, syslog-ng, nasm, screen, monit, nano,
dovecot, courier, proftpd, claws-mail, hexchat, ...

21



PROBLEMS / CHALLENGES

ASAN executable + non-ASAN library: fine
ASAN library + non-ASAN executable: breaks
Build system issues (mostly libtool)

Custom memory management (boehm-gc, jemalloc,
tcmalloc)

22



IT WORKS

Running server with real webpages.

But: More bugs need to be fixed.

23



KASAN

ASAN for the Linux Kernel.
Userspace and Kernel ASAN independent of each other.

Found a bug in my GPU driver just by booting with KASAN.

24



UNDEFINED BEHAVIOR SANITIZER
(UBSAN)

Finds code that is undefined in C

Invalid shifts, int overflows, unaligned memory access, ...

Problem: Just too many bugs, problems rare

There's also TSAN (Thread sanitizer, race conditions) and
MSAN (Memory Sanitizer, uninitialized memory)

25



AFL AND NETWORKING

Fuzzing network connections, experimental code by Doug
Birdwell

Usually a bit more brittle than file fuzzing

Not widely used yet

26



AFL AND ANDROID

Implementation from Intel just released
Promising (Stagefright)
Android Security desperately needs it

27



C - REPLACE, MITIGATE, FIX

C/C++ responsible for many common bug classes (Buffer
overflows, use after free etc.)

28



GET RID OF C

Safer programming languages
Go and Rust new rising stars

Some interesting projects: Servo (browser engine),
MirageOS

29



MITIGATION

Old: noexec pages, ASLR, stack canaries
Most Linux distros don't enable proper ASLR (-fpic/-pie)

New: Safe Stack, Code flow integrity (clang, Chrome is
testing this), RAP

30



THANKS FOR LISTENING

Use Address Sanitizer!
Fuzz your software.
Questions?
https://fuzzing-project.org/

€

CORE
INFRASTRUCTURE
INITIATIVE

31


https://fuzzing-project.org/

